中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
		ロッドバンドル(正方や稠密含む 235 種類) 3 × 3 体系	P:1.3to17MPa G:54to6050kg/(m ² • s) h _{in} :7to1140kJ/kg q":0.22to3.94MW/ m ² P:600 ~ 1400psia	サブチャ ンネル	熱電対 ~1%(q") 圧力:3psi	定常	あり	なし	サブチャンネ ル解析コード	デ ー 夕 点 数 11077、分量多 い	EPRI NP-2609(1982)Vol1 ~ 3 GEAP-5616(1968)	池野
			G:0.3 ~ 1.25Mlb/h•ft2		流量 : 1.5% サフ [゙] クール : 4Btu/lb 出力 : 1%							
		4×4体系	P:800,1000psia G:0.25 ~ 1.0Mlb/h•ft2 Hsub:23 ~ 250Btu/lb			定常,非定常	あり	あり		ロッド曲がり ギャップ小	GEAP-10221-12(1972)	井坂
		鉛直円管 水 均一熱流束	P=0.1-19MPa V=0.01-25m/s D=1-38mm L/D=7.7-792 hs=0-210C q=0.03-21MW/m ²	-	-	定常	有	無	単管 CHF 予測コ ード		Thompson,B.,AEEW-R356(19 64)	阪大 大川
出 力		鉛直円管 水 均一熱流束	P=3-9MPa V=0.6-4.3m/s D=10mm L/D=200-800 hs=10-100C q=0.33-2.1MW/m ²	-	-	定常	有	有	単管 CHF 予測コ ード		Wurtz,J.,RISO,No.372(197 8)	阪大 大川
あるいは	限界出力	鉛直円管 Freon12 均一熱流束	P0.57-1.1=MPa V=0.3-1.7m/s D=7.7-9.7mm L/D=57-310 hs=12-33C q=0.05-0.25MW/m ²	-	-	定常	有	有	単管 CHF 予測コ ード		Barnett,P.G.,AEEW-R443(1 965)	阪大 大川
熱流束	/]	鉛直円管 Freon12 均一熱流束	P=1.1MPa V=1.7-3.3m/s D=5.3-16.1mm L/D=28-337 hs=0.1-33.2C q=0.02-0.3MW/m ²	-	-	定常	有	有	単管CHF 予測コ ード		Stevens,G.F.,AEEW-R321(1 964)	阪大 大川
		鉛直円管 Freon21 均一熱流束	P=0.7-1.4MPa V=0.38-2.1m/s D=6.7-16.1mm L/D=76-320 hs=0.05-0.70C q=0.06-0.47MW/m ²	-	-	定常	有	有	単管 CHF 予測コ ード		Barnett,P.G.,AEEW-R443(1 965)	阪大 大川
	中国出力あるいは熱流束	中項目 小項目 出力あるいは熱流束 限界出力	中項目 小項目 試験体形状 日、「「「「」」」」」」」 日、「「」」」」」」」」 日、「「」」」」」」 3×3体系 3×3体系 4×4体系 4×4体系 細直円管 水 均一熱流束 3 第<1000 3 3 3 第<1000 3 第 1 3 1 4 1 3 1 4 1 4 1 3 1 3 1 3 1 4 1 3 1 4 1 3 1 3 1 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	中項目 小項目 試験休形状 試験パラ メーク範囲 ロッドパンドル(正方や稠密含む235 種類) F1.316170Pa G:54te6050kg/(m² + s) hm_77te1140kJ/kg q:0.220.34MW/m² 3 × 3 体系 P:600 - 1400psia G:0.3 - 125Mib/ht2 4 × 4 体系 P:800.1000psia G:0.3 - 125Mib/ht2 4 × 4 体系 P:300.1000psia G:0.3 - 125Mib/ht2 4 × 4 体系 P:300.1000psia G:0.3 - 125Mib/ht2 第直円管 水 均-熱流束 P=0.1 - 190Pa V=0.6 - 4.3 m/S D=1-30m U/D=7.7 - 792 hs=0-03.2 1MW/m² 額直円管 水 均-熱流束 P=3.90Pa V=0.6 - 4.3 m/S D=100m U/D=7.7 - 792 hs=0.1 - 200 hs=0.3 - 1.1 M/m² 額直円管 Freon12 均-熱流束 P=3.90Pa V=0.3 - 2.1 MW/m² 額直円管 Freon12 均-熱流束 P=7.7 - 9.7 mm U/D=57.310 hs=12.330 q=0.05-0.25MW/m² 額直円管 Freon12 均-熱流束 P=7.7 - 9.7 mm U/D=27.3 - 3.3 m/S D=0.3.3.2 (M/m² 額直円管 Freon12 均-熱流束 P=0.7 - 1.1 MPa D=0.3.2 (M/m² 額直円管 Freon12 均-熱流束 P=0.7 - 1.1 MPa D=0.3.2 (M/m² 第直円管 Freon12 均-熱流束 P=0.7 - 1.1 MPa D=0.3.2 (M/m² 第直円管 Freon21 均-熱流束 P=0.7 - 1.1 MPa D=0.7 - 0.7 - 1.1 MPa	中項目 小項目 試験(形) 試験(方) 空間 分解能 メーク範囲 クデン・ク範囲 分解能 クォーク範囲 クデン・ク範囲 分解能 3 1 </th <th>中垣目 小垣目 試験水海次 試験パラ メータ範囲 空間 分響能 測定方法 分響能 測定方法 分響能 測定方法 分響能 ロッドパンド以正方や現空会235 程数) P.1.3to17MFa G.54to6050(grm2+s) hg-727-11416k,1Ng q⁻¹0.22to3.94MW/m² サブチャ ンネル 熟電対 、2ネル 第二日 (1) (q⁻¹) 3 x 3 体系 P.800.1000psia C.0.3 - 1.28MIb/h-ft2 圧力: 3psi が量 1.5% 97.2-1.48U/b HJD:152 圧力: 3psi が量 1.5% 97.2-1.48U/b HJD:152 圧力: 3psi が量 1.5% 97.2-1.48U/b HJD:152 4 x 4 体系 P.800.1000psia G:0.3 - 1.28MIb/h-ft2 - - 4 x 4 体系 P.800.1000psia G:0.3 - 1.28MIb/h-ft2 - - 切合:1.9072 - - - - 10:0002 - - - - 10:012 - - - - 10:022 20001/b P.800.21000 - - 10:022 20002/b P.800.1000psia G:0.022 21W/m² - - 10:022 2:0301/b P.800.22 20001/b - - 10:022 2:0301/b P.800.22 2:0001/b - - 10:02 2:0201/b P.800.22 2:0001/b - - - 10:02 2:0201/b</th> <th>中田目 小田目 試験や秋 試験(72) × - 9200 空間 (新) 3世子法 (1) 3世子法 (1) 3世子法 (1) 3世子法 (1) 3世子法 (1) 3世子 (1) 3世常 (1) 3世 (1) 3世 (1) 3世 (1) 3世 (1) 3世 (1) 3世 (1) 3世 (1) 3th ft (1) 3th ft (1)</th> <th>학교 이료 값酸非常水 값酸1/5 / 2 / 2 / 2 / 3 / 3 / 2 / 2 / 3 / 3 / 2 / 2</th> <th>中部目 小器目 式基本部本社 社園(75) </th> <th>中国 小田 紅色/10 工業(1/2) 空田 測定方法 地図分解他 20 972 修訂に見入 (1/2) 構成 1 10</th> <th>中田 小田 試験単数 気気(2) (x - 2) 公園 (x - 2) (x - 2) (x - 2)<th>마파진 이름값 1500 1500 970 970 970 970 970 970 970 970 970 100<</th></th>	中垣目 小垣目 試験水海次 試験パラ メータ範囲 空間 分響能 測定方法 分響能 測定方法 分響能 測定方法 分響能 ロッドパンド以正方や現空会235 程数) P.1.3to17MFa G.54to6050(grm2+s) hg-727-11416k,1Ng q ⁻¹ 0.22to3.94MW/m ² サブチャ ンネル 熟電対 、2ネル 第二日 (1) (q ⁻¹) 3 x 3 体系 P.800.1000psia C.0.3 - 1.28MIb/h-ft2 圧力: 3psi が量 1.5% 97.2-1.48U/b HJD:152 圧力: 3psi が量 1.5% 97.2-1.48U/b HJD:152 圧力: 3psi が量 1.5% 97.2-1.48U/b HJD:152 4 x 4 体系 P.800.1000psia G:0.3 - 1.28MIb/h-ft2 - - 4 x 4 体系 P.800.1000psia G:0.3 - 1.28MIb/h-ft2 - - 切合:1.9072 - - - - 10:0002 - - - - 10:012 - - - - 10:022 20001/b P.800.21000 - - 10:022 20002/b P.800.1000psia G:0.022 21W/m ² - - 10:022 2:0301/b P.800.22 20001/b - - 10:022 2:0301/b P.800.22 2:0001/b - - 10:02 2:0201/b P.800.22 2:0001/b - - - 10:02 2:0201/b	中田目 小田目 試験や秋 試験(72) × - 9200 空間 (新) 3世子法 (1) 3世子法 (1) 3世子法 (1) 3世子法 (1) 3世子法 (1) 3世子 (1) 3世常 (1) 3世 (1) 3世 (1) 3世 (1) 3世 (1) 3世 (1) 3世 (1) 3世 (1) 3th ft (1) 3th ft (1)	학교 이료 값酸非常水 값酸1/5 / 2 / 2 / 2 / 3 / 3 / 2 / 2 / 3 / 3 / 2 / 2	中部目 小器目 式基本部本社 社園(75) 	中国 小田 紅色/10 工業(1/2) 空田 測定方法 地図分解他 20 972 修訂に見入 (1/2) 構成 1 10	中田 小田 試験単数 気気(2) (x - 2) 公園 (x - 2) (x - 2) (x - 2) <th>마파진 이름값 1500 1500 970 970 970 970 970 970 970 970 970 100<</th>	마파진 이름값 1500 1500 970 970 970 970 970 970 970 970 970 100<

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			鉛直円管 水 Chopped Cosine 熱流束	P=3.8-12.5MPa V=0.84-0.61m/s D=9.5-15.9mm L/D=63-386 hs=7.1-10.8C q=0.96-3.3MW/m ²	-	-	定常	有	有	単管CHF 予測コ ード		Lee,D.H.,AEEW-R355(1965) ,AEEW-R479(1966),AEEW-R4 77(1966)	阪大 大川
			鉛直円管 水 Chopped Cosine 熱流束	P=6.9MPa V=3.5-13.0m/s D=10.2mm L/D=480 hs=11-126C q=1.4-3.2MW/m ²	-	-	定常	有	有	単管 CHF 予測コ ード		Casterline,J.E.,Columbia Univ.,TID-21031(1964)	阪大 大川
			鉛直円管 水 Chopped Cosine/Outlet Peak 熱流束	P=8.4-14.7MPa V=0.73-5.0m/s D=11.6-17.1mm L/D=77-102 hs=0-259C q=0.55-4.8MW/m ²	-	-	定常	有	有	単管CHF 予測コ ード		Biancone, F., EUR2490e(196 5)	阪大 大川
基本	出力あっ	限	鉛直円管 水 Cold Patch	P=0.28-6.9MPa V=0.32-3.6m/s D=9.3-12.6mm L/D=262-338 hs=7.0-55C q=0.59-1.7MW/m ²	-	-	定常	有	有	単管CHF 予測コ ード		Bennet,A.W.,AERE-R5076(1 966)	阪大 大川
的な物理	るいは熱	界出力	鉛直矩形管 水 両面加熱	P=4.1-13.8MPa V=0.04-10.4m/s Dh=2.4-4.7mm L/Dh=32.7-242.3 hs=3.9-328.9C q=0.13-6.2MW/m ²	-	-	定常	有	有	単管CHF予測コ ード		DeBortoli,R.,A.,WAPD-188 (1958)	阪大 大川
重	流束		鉛直矩形管 水 両面加熱	P=6.9-7.3MPa V=0.33-2.6m/s Dh=11.4-20.5mm L/D=45.8-82.8 hs=6.9-111.7C q=1.5-3.2MW/m ²	-	-	定常	有	有	単管 CHF 予測コ ード		Tipperts,F.T.,ASME Paper 62WA162(1962)	阪大 大川
			鉛直円管 水 Inlet/Outlet Peak 熱流束	P=6.8-13.9MPa V=0.9-7.7m/s D=11.3mm L/D=161.4 hs=4.8-173C q=0.52-2.8MW/m ²	-	-	定常	有	有	単管 CHF 予測コ ード		Swenson,H.S.,Babcock&Wil cox,BAW-3238(1964)	阪大 大川

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			環状流路 内管加熱 一様加熱 垂直管 発熱長:500mm 内管外径:12.7mm 外管内径:20,21.8,25.4mm	Test fluid: Water Flow direction:Upward P:0.118MPa T _{in} :44 to75K (182 to 312kJ/kg) W:0 to 260 kg/(m ² s) X:1 to 48%		K-熱電対:温度 ±0.2% CHF の値 1.9% 流量 8% X 5%	定常	無し	有り	サプチャンネ ルコード 二流体コード		S. El-genk, Int. J. Heat Mass Transfer. Vol.31, No. 11, pp.2291-2304(1988)	九大 森
			環状流路 内管加熱 一様加熱 垂直管 発熱長:1000mm 内管外径:10mm 外管内径:22mm	Test fluid: Water Flow direction: Upward P:0.128MPa T _{in} :7 to52K W:20 to 280 kg/(m ² s)		CA 熱電対 T(TypeCA): ± 0.5K W:測定値の± 2% q:1%	非定常(ただ し , 時間分解 能 の 記 載 な し)	無し	有り	サブチャンネ ルコード 二流体コード		T. Schoesse, J. of Nucl. Sci. and Tech., vol.34, No 6, p559-570(1997)	九大 森
基本的	出力ある	限	円管 垂直管 一様加熱 発熱長:300 to 1770mm 内径:6,8,10,12mm	Test fluid: Water Flow direction: Upward P:0.106 to 0.951MPa h _{in} :50 to 654kJ/kg W:20 to 277 kg/(m ² s) X:32.3 to 125.1% q _{CHF} :108 to 1598 kW/m ²		T(TypeK) : ± 1.6K P:±1kPa W : ±2% q : ±5%	定常	有り CHF デー 夕:513 点	有り	サブチャンネ ルコード 二流体コード		Hong Chae Kim, Nucl. Eng. And Des., vol 199, 49-73 (2000)	九大 森
な物理	いは熱泣	出力	円管 垂直管 一様加熱 発熱長:2330mm 内径:7.5mm	Test fluid: Refrigerant-12 Flow direction: Upward P: 3.5Mpa(Max) W:1800 kg/(m ² s)(Max)		記載無し	非定常(ただ し,時間分解 能の記載な し)	無し	有り	サブチャンネ ルコード 二流体コード	過渡変化(流 量 , 圧力 , 熱流 束)に関する実 験	G. P. Celata, Proc. of Transient Phenomena in Multiphase flow,Dubrovnik,1987	九大森
里	流束		円管 垂直管 一様加熱 発熱長:1500mm 内径:10mm	Test fluid: R113 Flow direction: Upward P:0.318MPa W:350 to 1700 kg/(m ² s) Xin: - 0.178 or -0.325 X _{exit} :0.2 to 0.9 q:400 to 1800 kW/m ²		T(type CA) 記載無し	定常	無し	有り	サブチャンネ ルコード 二流体コード		植田,機論 B,47-423,p2191-2198(198 1)	九大森
			円管 垂直管 一様加熱 発熱長:450 to 2000mm 内径:6.92mm	Test fluid: R-134a Flow direction: Upward P:0.96 to 2.39MPa W:500 to 3000 kg/(m ² s) X _{exit} :-5 to 95%		記載無し 	定常	無し	有り	サブチャンネ ルコード 二流体コード	流動障害物(ス ペーサ)に関す る CHF	I.L. Pioro,Int. J. of Heat and Mass Trans., 45,4417-4433 (2002)	九大 森
			円管 垂直管 一様加熱 発熱長:250,1000,3000mm 内径:5mm	Test fluid: R115 Flow direction: Upward P:1.5 to 2.9MPa W:1090 to 6540 kg/(m ² s) h _{in} :-30 to 60kJ/kg		0.1のK熱電対	定常	無し	有り	サプチャンネ ルコード 二流体コード		横谷,機論 B,62-597,1898-1905(1996)	九大森
			垂直円管、内径 6~14.8mm、長さ 115mm	流体 R-113、圧力 0.1MPa、		熱電対、供給電力 	定常	無し	有り 			小泉ら、機論、 B 編 60 巻、 570 号、P545 ~ 551、平成 6 年 2 月	工学院 小泉

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			矩形流路 (50mm×2.25mm) 一様および不均一加熱 発熱長:750mm	Test fluid: water Flow direction: Upward and Downward P:0.1MPa W: Upward:0 to 300 kg/(m ² s) Downward:15 to 1000 kg/(m ² s) T _{in} :4 to78K		0.5 のシース熱 電対	定常	無し	有り	サブチャンネ ルコード 二流体コード		神永,機論 B,55-517,2809-2813(1989)	九大森
			円管 垂直管 一様加熱 発熱長:250 to 6400mm 内径:3,5,8mm	Test fluid: R-12 Flow direction: Upward P:1.47MPa h _{in} :-35 to 32kJ/kg W:510 to 6055 kg/(m ² s)		記載無し	定常	無し	有り 	サブチャンネ ルコード 二流体コード		横谷,機論 B,53-495,3363-3369(1987)	九大森
			円管 垂直管 一様加熱 length/diameter:80 to 2485 内径:3 to 40mm	Test fluid:Water Flow direction: Upward P:0.1 to 20MPa h _{in} :-1211 to 2711kJ/kg W:6 to 8000 kg/(m ² s)		記載無し	定常	有り	有り	サブチャンネ ルコード 二流体コード		D.C. Groeneveld,Nucl. Eng. and Des.,163,1-23 (1996)	九大森
	ж		単管 内径 9.7 mm 長さ 1.8 m	P=3.9 11 Mpa W=1017 4068 kg/m2s Hin=0 582 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Lee, AEEW-R309, (1963)	NUPEC 宇津野
基本的	I 力 あ ろ	限	単管 内径 9.5 11.8 mm 長さ 0.9 3.7 m	P=6.9 Mpa W=2034 4068 kg/m2s Hin=23 465 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Lee, AEEW-R355, (1965)	NUPEC 宇津野
n な 物	っいは	界出力	単管 内径 2 - 38 mm 長さ 0.1 3.7 m	P=3.9 19 Mpa W=30 10600 kg/m2s Hin=12 648 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Thompson, AEEW-R356, (1964)	NUPEC 宇津野
埋 量	烈流	/]	管群(ロッド本数:3~19)	P=6.9 13.8Mpa W=680 5420kg/m2s Hin=60 700 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Macbeth, AEEW-R358, (1964)	NUPEC 宇津野
			円環 ロッド径 9.5 96.5 mm 流路径 14.1 102 mm	P=6.9 Mpa W=680 2710 kg/m2s Hin=23 84 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Barnett, AEEW-R463, (1966)	NUPEC 宇津野
			単管 内径 12.6 mm 長さ 1.8 5.6 m	P=6.9 Mpa W=689 2712 kg/m2s Hin=21 542 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Bennet, AERE-R5055, (1965)	NUPEC 宇津野
			単管 内径 12.6 mm 長さ 0.9 3.7 m	P=6.9 Mpa W=1356 2712 kg/m2s Xin=-0.2 0.4	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Bennet, AERE-R5072, (1965)	NUPEC 宇津野
			単管 内径 12.6 mm 長さ 5.6 m	P=6.9 Mpa W=407 5153 kg/m2s Hin=47 163 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Bennet, AERE-R5373, (1967)	NUPEC 宇津野
			単管 内径 6.2 mm 長さ 0.9 5.5 m	P=6.9 Mpa W=1356 2712 kg/m2s Hin=93 365 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Dell,AERE-M2216, (1969)	NUPEC 宇津野

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			円環 ロッド径 20 mm 流路径 24 mm	P=3.5, 6.9 Mpa W=300	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Moeck, AECL-3656, (1970)	NUPEC 宇津野
			単管 内径 10 mm 長さ 2.0 8.0m	P=7.0 Mpa W=500 3000 kg/m2s Hin=53 476 kJ/kg	断面平均	被覆管温度	定常	あり	あり	サブチャンネ ルコード 三流体コード		Wurtz, Riso Rep. No. 372, (1978)	NUPEC 宇津野
			BWR 8×8パンドル	P=5.5 8.6 Mpa W=267 2055 kg/m2s Hin=25 126 kJ/kg	断面平均	被覆管温度	定常・過渡	なし	あり	サブチャンネ ルコード 動特性コード 三流体コード	数値データを OECD/NEA 国際 ベンチマーク へ公開予定	井上、日本原子力学会誌、 Vol.40, No.10 (1998)	NUPEC 宇津野
			BWR 9×9バンドル	P=5.5 8.6 Mpa W=300 1950 kg/m2s Hin=25 126 kJ/kg	断面平均	被覆管温度	定常・過渡	なし	あり	サブチャンネ ルコード 動特性コード 三流体コード		佃、日本原子力学会誌、 Vol.1, No.4 (2002)	NUPEC 宇津野
其	出		BWR 燃料模擬 4 x 4 バンドル	P=7MPa, W=1400-500kg/m2 Hsub=50 kJ/kg	断面平均	ロッド温度挙動 より判定 限界出力 1.5% 論文中に各パラ メータ精度記入 ある。	時間平均	なし	あり	サプチャンネ ルコード 過渡解析コー ド 二流体コード	原 子 力 学 会 POST-BT 標準 推奨コード検 証に利用	光武、日本機械学会論文集 Vo.59,No.565(1993),p.271 5	師岡慎一
本的な物	万あるいけ	限界出	稠密配列 7本ロッドバンドル	P=7.2 MPa, W=1400-284 kg/m2 Hsub=50 kJ/kg	断面平均	ロッド温度挙動 より判定 限界出力 1.5% 論文中に各パラ メータ精度記入 ある。	時間平均	なし	あり	サブチャンネ ルコード 過渡解析コー ド 二流体コード	T R A C コー ドの稠密バン ドル体系への 検証に利用。	山本泰、原子力学会誌, Vol.1,No.3(2002),282	師岡慎一
初理量	i 熱流 市	力	水平パンドル 3×3 in-line 配列 d=19.05mm p=23.8mm(vertical) 31.75(horizontal)	R113 プール沸騰 大気圧	0.254mm	K 熱電対		無 	有	二流体コード		Chan ASME J.of Heat Transfer Vol.109 (1987)752-760	東芝岩城
	木		水平バンドル 3 × 3 staggered 配列 d=13.6mm p/d=1.25 l=24mm	R12 プール沸騰 P: 7.85bar G: 50-500kg/m ² s x: 0-0.3	0.5mm o.d.	K 熱電対		無	有	二流体コード		Cumo Nuclear Tech., Vol.49(1980) 337-346	東芝岩城
			241 本 kettle reboiler inline 配列 d=19.05mm, p=25.4mm	R113 プール沸騰 大気圧 q":10-100kw/m ²		熱電対		無	有	二流体コード		Shuller First U.K National Conference on Heat Transfer, No.86, Vol.2(1984)795-805	東芝岩城
			水平バンドル 5×27 in-line 配列 d=7.94mm p=1.3,1.7mm	R113 鉛直上昇流 P:1.5,5bar G:50-500kg/m ² s		熱電対		無	有	二流体コード		LerouxASME J.of HeatTransferVol.114(1992)179-184	東芝岩城
			水平バンドル d=19.1mm p/d=1.5 3×16 in-line 配列	R113 鉛直上昇流 G:132-560kg/m ² s Re: 4886- 20729 Subcooling: 0-6		熱電対		無	有	二流体コード		Yao Int. J. of Heat and Mass Transfer Vol.32No.1(1989) 95-103	東芝岩城
			BWR,PWR 4 × 4 バンドル	BWR, PWR 運転条件 P: 2-18MPa	0.5mm o.d.	K熱電対	150Hz	有	有			Iguchi JAERI-Research (2001)2001-013, (2001)2001-060	東芝岩城

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			水平バンドル	R12 プール沸騰	0.5mm o.d.	K 熱電対		無	有	二流体コード		Cumo	
			3 × 3 staggered 配列 d=13.6mm p/d=1.25 l=24mm	P: 7.85bar G: 50-500kg/m ² s x: 0-0.3								Nuclear Tech., Vol.49(1980) 337-346	東芝岩城
			水平バンドル 3 × 3 staggered 配列 d=13.6mm p/d=1.25 l=24mm	R12 プール沸騰 P: 7.85bar G: 50-500kg/m ² s x: 0-0.3	0.5mm o.d.	K 熱電対		無	有	二流体コード		Cumo Nuclear Tech., Vol.49(1980) 337-346	東芝岩城
			241 本 kettle reboiler inline 配列 d=19.05mm, p=25.4mm	R113 プール沸騰 大気圧 q":10-100kw/m ²		熱電対		無	有 	二流体コード		Shuller First U.K National Conference on Heat Transfer, No.86, Vol.2(1984)795-805	東芝岩城
			4~7 本稠密バンドル	P=1 ~ 3.9MPa G=460 ~ 4270kg /cm2/s		TC	定常および 非 定 常 (10ms)	有り	有り	サブチャンネ ル解析 二相流解析		岩村他 JAERI-M 90-044	原研大久保
			4~7 本稠密バンドル	P=4 ~ 15.8MPa G=470 ~ 3830kg /cm2/s		TC	定常	有り	有り	サブチャンネ ル解析 二相流解析		JAERI-M 91-055	原研大久保
基	出 力		7 本稠密バンドル	P=15.5MPa G=1000 ~ 4400 kg /cm2/s		TC	定常	なし	有り	サブチャンネ ル解析 二相流解析		新谷他 JAERI-Research 91-055	原研大久保
本 	ある	限要	7 本稠密バンドル	P=0.98 ~ 8.51 MPa G=0 ~ 2515 kg /cm2/s		TC	定常	なし	有り	サブチャンネ ル解析 二相流解析		呉田他 Nucl. Technol., 143,1	原研大久保
な 物 理	い は 埶	1 出	PWR 管群 (5×5,6×6)	$\begin{array}{c} P{=}4.9{\text{-}}16.6MPa \\ G{=}1000{\text{-}}5000 kg/m^2 s \\ \Delta h_{in}{=}125{\text{-}}800 kJ/kg \end{array}$	-	熱電対	定常,非定常	なし	あり (主 として相 関式との 比較)	サブチャンネ ル解析コード	データは NUPEC 所有	秋山、日本原子力学会 誌,vol.36,No.1 (1994)	三菱 末村
量	流束		PWR 管群(4×4) 局所流路閉塞有(閉塞率約 65%)	P=10.4-16.5MPa G=2030-4750kg/m2s	-	熱電対	定常	あり	あり	サブチャンネ ル解析コード		Hill,K.W., ASME 74-WA/HT-54 EPRI, NP-2609(test150,152)	三菱 末村
			PWR 管群(4×4) 局所出カスパイク(20%)模擬	P=10.4-16.5MPa G=2030-4750kg/m2s	-	熱電対	定常	あり	あり	サブチャンネ ル解析コード		Hill,K.W., ASME 74-WA/HT-54 EPRI, NP-2609(test149)	三菱 末村
			PWR 管群(4 × 4) 燃料棒曲がり (接触, 85%)	P=10.3-16.9MPa G=1900-4750kg/m2s	-	熱電対	定常	あり	あり	サブチャンネ ル解析コード		Hill,K.W, ASME 75-WA/HT-77 Nagino, Y., J. of Nucl. Sci. and Tech., 15[8], 568-573 (1978) Nagino, Y., J. of Nucl. Sci. and Tech., 15[12], 943-945 (1978) EPRI, NP-2609(test167,168,169)	三菱 末村

表2	気液	二相流デ	ータベ	、ース
			-	

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 デ ー タ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			PWR 管群(5 × 5、太径シンブル有)	P=10.4-16.5MPa	-	熱電対	定常	あり	あり	サブチャンネ ル			
			燃料棒 / シンブル曲がり(接触、 50%)	G=1900-4750kg/m2s						解析コード		Markowski, E.S.,. ASME 77-HT-91 EPRI, NP-2609(test65,67,69)	三菱 末村
			鉛直矩形管 (2.5x25.4mm) 局所出力スパイク(100%)模擬	P=13.8MPa G=510-2700kg/m2s	-	熱電対	定常	あり	あり	サブチャンネ ル解析コード		WAPD-188(Table26)	三菱 末村
			PWR 管群 (5×5,6×6)	$\begin{array}{l} P{=}4.9{\text{-}}16.6\text{MPa} \\ \text{G}{=}1000{\text{-}}5000\text{kg/m}^2\text{s} \\ \Delta h_{in}{=}125{\text{-}}800\text{kJ/kg} \end{array}$	-	熱電対	定常 , 非定常	なし	あり (主 として相 関式との 比較)	サブチャンネ ル解析コード	データは NUPEC 所有	秋山、日本原子力学会 誌,vol.36,No.1 (1994)	三菱 末村
基	出 力		4 x 4 ロッド径 : 12.3mm ロッドピッチ:16.2 mm 発熱長:3708 mm	P= 7 MPa G=400 to 1500 kg/m ² s Hsub=50 kJ/kg 7K	-	熱電対 限界出力 1.5% 論文中に各パラ メータ精度記入 ある。	定常	なし	あり	サプチャンネ ル解析コード	スペーサ形状 を変更した場 合の限界出力 への影響デー タ	師岡、機論、第 67 巻, 第 654 号, B 編 (2001 年 2 月), 269 ページ	師岡
本 的 な 物	あるいけ	限界出	円管、内径 10mm、」 流体 R-113 蒸気&液	流量 65~165kg/h 乾き度 0.7~0.95 圧力 0.3 MPa 熱流束~8×10 ⁴ kcal/h		熱電対、加熱 電力測定	定常	なし	あり			小泉、日本機械学会論文集 44 巻、377 号、P191~199、 昭和 53 年 1 月	小泉
理量	d 熱 流 束	力 	垂直円管、内径 15mm、長さ~ 610mm	対向流下限界熱流束 流体水、 エタノール、R-113、0.1MPa		熱電対 供給電力 測定	定常	あり	あり			宮下、機論、B編 58 巻、 548 号、P1234~1239、平 成4年4月	小泉
			垂直円管、内径 6 ~ 14.8mm、高さ ~ 243m	流体 113、圧力 0.1MPa、質量流束 18 ~ 300kg/m ² s、 qcr = (3.7~ 26) × 10 ⁴ W/m ²		熱電対 供給電力 測定	定常	あり	あり			小泉ら、 機論、B 編、64 巻、624 号、P2578~2585、 平成 10 年 8 月	工学院 小泉
			液対向流、環状流路、外管内径 34 & 36mm、内管外径 26~35mm、間隙 0.5~10mm	流体 R-113、圧力 0.1MPa、		熱電対	定常	 あり	あり			渡邊ら、機論 B 編、68 巻、 675 号、P3152~3160、平 成14年 11 月	工学院 小泉
			水平矩形、20 mm wide × 10 mm high × 830 mm long.伝熱面 SUS0.2 thick × 5 wide × 40 mm long 底面壁	水 - 空気、出口大気圧、入り口 50 °C、 G = 169 ~ 4220 kg/m ² s、 Ug = 0 ~ 19 m/s、qw = ~ 7.0×10^3 kW/m ² 、flow state: dispersed-annular flow ~ a slug flow.		熱電対、ビデオ画 像	定常	なし	あり			小泉ほか、Proc. of 4th JSME-KSME Thermal Eng. Conf., Vol. 1, P1-445 ~229, Oct., 2000	工学院小泉

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			垂直環状流路、外管内径 D = 34, 36, and 46 mm、間隙 0.5, 1.0, 2.0, 5.0 and 10.0 mm	流体 R-113、 圧力 0.1 ~ 0.2MPa、 流量 G = 102 ~ 103 kg/m2s		熱電対	定常	なし	あり			小泉ほか、2001 ASME International Mechanical Engineering Congress, and Exposition, Heat Transfer Div., CD-ROM, IMECE2001/HTD-24219, Nov., 2001	工学院 小泉
基	出力		水平矩形 20W 10H mm, 660 mm long、SUS 伝熱面流路底辺 0.2t 5W 40L mm	出口大気圧、水、Glass beads of 0.6 mm diameter、2,700 kg/m3、入リロ Subcooling: 40 C、Water mass flux: 170 6,700 kg/m2s, Heat flux: 0 8.0 103 kW/m2 、Volumetric introduction ratio of the particles: up to 28%.		熱電対、ビデオ画 像	定常	なし	あり			小泉ほか、10th International Conference on Nuclear Engineering CD-ROM, ICONE10-22470, Aprilo, 2002	工学院 小泉
本的な物	あるいは	限界出力	水平矩形 20 mm wide 10 mm high 830mm long、伝熱面 SUS0.2 mm t 5 mm w 40 mm long 流路底面	水、出口大気圧、入り口サブクーリング 50K、water mass flux of 170 ~ 3400 kg/m2s、heat flux of 0 ~ 8.0 103 kW/m2.		熱電対、ビデオ画 像	定常	なし	あり			小泉ほか、11th International Conference on Nuclear Engineering, CD-ROM, ICONE11-36226, April, 2003	工学院 小泉
物理量	熱 流 束		垂直環状流路、Outer pipe (heated test section): copper pipes, I.D. 40 or 41 mm, Heating length 204 mm、 Inner pipe: glass pipes (non-heated) or copper pipes (heated), O.D. 30, 36, 38 or 40 mm、 Clearance : 0.5, 1.0, 2.0 and 5.0 mm	流体 R-113、 対向流条件、 圧力 0.1 MPa、		熱電対、ビデオ画 像	定常	なし	あり			小泉ほか、11th International Conference on Nuclear Engineering, CD-ROM, ICONE11-36226, April, 2003	工学院 小泉
			垂直環状流路、Outer pipe (heated test section): copper pipes, I.D. 40 or 41 mm, Heating length 204 mm, Inner pipe: glass pipes (non-heated) or copper pipes (heated), O.D. 30, 36, 38 or 40 mm, Clearance : 0.5, 1.0, 2.0, 5.0, 10 mm and no inner pipe.	水、対向流条件、圧力 0.1MPa		熱電対、ビデオ画 像	定常	なし	あり			小泉ほか、 日本原子力学 会 2002 年秋の大会予稿集、 Vol. 、P362、平成 14 年 9 月	工学院 小泉

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			36 本稠密バンドル	P=0.1MPa Re=2000 ~ 100000		DP	定常	なし	有り	サブチャンネ ル解析		JAERI-M 91-055	原研大久保
			BWR 8×8バンドル	P=0.1, 1,0, 7.2, 8.6 Mpa W=267 2055 kg/m2s X=0 0.25	断面平均	差圧計 ±1%(最大目盛に 対して)	定常	なし	あり	二流体コード	数値データを OECD/NEA 国際 ベンチマーク へ公開予定	井上、日本原子力学会誌、 Vol.40, No.10 (1998)	JNES 宇津野
			BWR 9×9バンドル	P=0.1, 1,0, 7.2, 8.6 Mpa W=300 2100 kg/m2s X=0 0.25	断面平均	差圧計 ±1%(最大目盛に 対して)	定常	なし	あり	二流体コード	BWR設計相 関式検証に利 用。	佃、日本原子力学会誌、 Vol.1, No.4 (2002)	JNES 宇津野
			鉛直矩形管 (2.5x25.4mm、 1.3x25.4mm)	P=7.6, 13.8MPa G=1000-6800kg/m2s	チャンネ ル平均	マノメータ	定常	なし	あり	サブチャンネ ル解析コード		Sher,N.C., Chem. Engr. Prog. Symp. Series, Nucl. Engr., Part VI, Vol.55, No.23 (1959)	三菱末村
基			鉛直単管 (De=5.1mm)	P=13.8MPa G=950-2700kg/m2s no void - bulk boiling	チャンネ ル平均	未調査	定常	未調査	未調査	サブチャンネ ル解析コード		WAPD-TH-437 (1961)	三菱 末村
本的な物理量	圧力	圧 力 損	鉛直単管 (De=8.8mm)	P=13.8MPa G=400 – 700 kg/m2s local – bulk boiling	チャンネ ル平均	未調査	定常	未調査	未調査	サブチャンネ ル解析コード		WAPD-AD-TH-502 (1959)	三菱 末村
		失	鉛直単管 (De=5.4mm)	P=13.8MPa G=1300 – 2600kg/m2s	チャンネ ル平均	未調査	定常	未調査	未調査	サブチャンネ ル解析コード		UCLA, COO-24 (1951)	三菱 末村
			鉛直単管 (De=4.5mm)	P=11.0MPa G=430 – 5100kg/m2s	チャンネ ル平均	未調査	定常	未調査	未調査	サブチャンネ ル解析コード		WAPD-TH-410 (1958)	三菱 末村
			鉛直円管 気相 : 空気 液相 : グリセリン水溶液	P=0.1-0.6MPa JG=10-50m/s JL=0.04-0.3m/s D=9.5-31.8mm dp/dz=1-30kPa/m	-	差圧変換器	定常	無	有	環状流差圧相 関式		Int.J.Multiphase Flow,24(4),587-603(1998)	
			円管(内径1.5cm,長さ460cm) 環状流路(ロッド径 1.5cm,流路 径:1.7cm,長さ:320cm) 環状流路(ロッド径 1.0cm,流路 径:1.5cm,長さ:80 and 120 cm)	水 蒸気 P=71 kg/cm2 G=110 to 380g/cm2/s X=-0,3 to 0,.8	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	有	有	解析コードの構成方程式	コードの圧損 評価式を検証 するのに最適。 相関式検証 に利用経験あ り。	CISE-R-184(1971)	師岡

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			19rod cluster(水力直径:7.7mm)	水 蒸気 P=45 bars G=220 to 690 kg/m2/s X=-0.04 to 0.2	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	有	有	解析コードの 構成方程式	コードの圧損 評価式を検証 するのに最適。 相関式検証に 利用経験あり。	CISE-NT76.067(1976)	師岡
			円管(内径 79mm)	水 蒸気 P=45 bars G=90 to 360 kg/m2/s X=-0.04 to 0.47	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	有	有	解析コードの 構成方程式	コードの構成 式の検証に利 用	CISE-NT76.067(1976)	師岡
			円管(内径 32mm)	水 蒸気 P=110 to 187 bars G=380 to 3500 kg/m2/s X=-0.05 to 0.70	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	有	有	解析コードの 構成方程式	コードの構成 式の検証に利 用	CEGB R/W/R 172(1973)	師岡
			円管(内径 9.2mm)	水 蒸気 P=71 bars G=1100 to 3800 kg/m2/s X=-0.1 to 0.6	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	有	有	解析コードの 構成方程式	コードの構成 式の検証に利 用	CISE-R185(1967)	師岡
基本		E	円管(内径 15.2 to 24.9mm)	水 蒸気 P=50 bars G=1100 to 3800 kg/m2/s X=-0.05 to 0.6	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	有	有	解析コードの 構成方程式	コードの構成 式の検証に利 用	CISE-R1861963)	師岡
的な物	圧 力	力損失	円管(内径 15mm)	水 蒸気 P=67 bars G=1100 to 3800 kg/m2/s X=-0.1 to 0.6	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	有	有	解析コードの 構成方程式	コードの構成 式の検証に利 用	CISE-R1221964)	師岡
埋量			19rod cluster(水力直径:7.7mm)	水 蒸気 P=51 to 71 bars G=800 to 3000 kg/m2/s X=-0.025 to 0.6	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	有	有	解析コードの 構成方程式	コードの構成 式の検証に利 用	CISE-R339(1976)	師岡
			BWR 4 × 4 バンドル 記載有り	実機定格運転状態 P=7Mpa,W=1400,833kg/m2 s X=5,10,15,20 %	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	定常	無	有	解析コードの 構成方程式	コードの構成 式の検証に利 用	日本原子力学会誌、 vol38,No.9,PP771(1996)	師岡
			稠密配列 7 本ロッドバンドル	P=7.2 MPa, W=1400-284 kg/m2 Hsub=50 kJ/kg X=0 to 25%	断面平均	差圧変換器 差圧 1% 他のパラメータ の精度記載あり。	時間平均	なし	あり	解析コードの 構成方程式	稠密炉心設計 用圧損相関式 検証に利用。	師岡、日本原子力学会論文 集、2[3], 301(2003).	師岡
			単管 内径 12.6 mm 長さ 3.7 m	P=3.4, 6.9Mpa W=1354 – 2765kg/m2s X=15 – 58 % (Adiabatic)	断面平均	差圧計	定常	あり	あり	三流体コード		Keeys, AERE-R6293, (1970)	NUPEC 宇津野
			水平管、 内径 210mm、 長さ 30.5m	出口大気圧、 室温、 Ug 0 ~ 5.5 m/s、Ul 0 ~ 4m/s		差圧	定常	あり	あり			小泉、機論、B編 56 巻、 532 号、P3750~3755、平 成2年12月	小泉

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			垂直円柱	大気圧、R113 プール沸騰、ΔT _{sub} =0,10,20,30K L = 100mm; φ20 (Cu)	20mm 平 均	熱電対·集中熱定 数系近似 5%	非定常	なし	あり			大竹・西尾、日本機械学会 論 文 集 、 B 編 、 Vol.58,No.547,P845(1992)	大竹浩靖(デー 夕所有)
			水平円柱	大気圧、R113 プール沸騰、ΔT _{sub} =0,10,20,30K D=8, 16, 30, 50.8 mm (SUS)	局所	熱電対・逆熱伝導 問題 8%	非定常	なし	あり			大竹・西尾、日本機械学会 論 文 集 、 B 編 、 Vol.58,No.547,P845(1992)	大竹浩靖(デー 夕所有)
			垂直平板	大気圧、水 流下液膜、F=0.1 ~ 0.6kg/ms、平滑面、 酸化面、#320 面、銅・黄銅、50 × 230 mm	局所	熱電対・逆熱伝導 問題 10%	非定常	なし	あり			大竹・小泉・高橋、日本機械 学 会 論 文 集 B 編 、 Vol.64,No.624,P2547(1998)	大竹浩靖(デー 夕所有)
			垂直円柱	P=0.1MPa, R 1 1 3 u=0 ~ 10m/s, ΔT_{sub} =10,20,30K L=110mm; ϕ 50	局所	熱電対・逆熱伝導 問題 10%	非定常	なし	あり			Ohtake et al., Proc. 4th JSME-KSME Thermal Eng. Conf., Vol. 2, P361(2000)	大竹浩靖(デー 夕所有)
			水平円柱	大気圧、R-113・イソプロパノール プール沸騰、 D=6.35, 7.95, 12.7, 17.1, 21.3, 42.1, 48.1mm(SUS)	平均	蒸気加熱	定常	あり	あり			Breen-Westwater, Chem. Eng. Prog., Vol.58, No.7, P67(1962)	大竹浩靖(デー 夕読み取り済 み)
			水平平板	大気圧、水 u=1-4.5m/s、ΔT _{sub} =22-72K L=200mm(Cu)	局所	熱電対	非定常	なし	あり (無次元 変数表 示)			Wang, BX. and Shi, DH., , Int. J. Heat Mass Transf., Vol. 28, No. 8, P1499(1985).	大竹浩靖(デー 夕読み取り済 み)
基本	志丸		水平平板	大気圧、水 液膜流、u=0.27~0.85m/s、∆T _{sub} =9~38K L=110mm	局所	熱電対	非定常	なし	あり			金・ほか2名、日本機械学 会 論 文 集 B 編 、 Vol.62,No.594,P734(1996)	大竹浩靖(デー 夕読み取り済 み)
- 的 な 物	伝達	B T 以	垂直円柱	大気圧、メタノール u=0.61~4.11m/s、ΔT _{sub} =7.2, 15.6K L=183mm	平均	蒸気加熱	定常	なし	あり			Greitzer, E. M. and Abernathy, F. H., Int. J. Heat Mass Transf., Vol. 15, No. 2, P475(1972).	大竹浩靖(デー 夕読み取り済 み)
初理量	率	降	水平平板	大気圧、水 プール沸騰、#2000・#80、加熱・冷却実 験、15×15×60 mm(Cu)	平均	熱電対・フーリエ 法則	定常	なし	あり			Ohtake et al., The 6th ASME-JSME Thermal Engineering Joint Conference, TED-AJ03-319, (2003).	大竹浩靖(デー 夕所有)
			水平平板	大気圧、R-113 プール沸騰、鏡面・#400・#80、加熱・ 冷却実験、φ63.5×15.2 mm(Cu)	平均	蒸気(噴流)加熱	定常	なし	あり			Haramura, ASME/JSME Termal Engineering Proc. Vol. 2, P59, (1991).	大竹浩靖(デー 夕読み取り済 み)

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内 ベー	_] データ ス提供者
			PWR 管群 (5x5)	P=9.8-16.6 MPa G=1390-4170kg/m2s	-	熱電対	定常、非定常	なし	あり	サブチャンネ ル解析コード	データは NUPEC が所 持	佃, 日本機会学会 2002 年年会 予稿集, 平成 14 年	三菱	末村
			鉛直鉛管 (2.5, 5.1mm)	P=16.8 – 21.5 MPa	-	熱電対	定常	あり	あり	サブチャンネ ル解析コード		Bishop, A.A., ASME 65-HT-31	三菱	末村
			垂直上昇管 1)ステンレス管(2 種類) 内径 10.4mm, 4.6mm 長さ 381mm 2)ガラス管 内径 13.0mm 長さ 229mm	作動流体*R113 P=0.1MPa 1)ステンレス管[熱伝達] W= 580-1109kg/m ² s(内径 10.4mm),X<0.1 450-540kg/m ² s(内径 10.4mm),X<0.5 2)ガラス管[可視化] W=897kg/m ² s(内径 10.4mm)		測定方法 ・熱電対 測定精度 ・記述なし	定常	あり	あり	サブチャンネ ルコード 二流体コード	逆環状流から 噴霧流ご至る 熱伝達データ を提供 噴霧流熱伝達 式を提案	R. S. Dougall & W. M. Rohsenow, MIT-TR-9079-26(1963)	日立	西田浩
基			1)円管((内径 2.5-22mm) 流れ方向:垂直と水平管 2)二重管 流れ方向:垂直	相関式開発に用いたデータベース記載 1)円管 P=6.8-21.5MPa W= 700-5300kg/m ² s,0.1 <x<0.9 2)二重管 W= 800-4100kg/m²s,0.1<x<0.9< td=""><td></td><td>測定方法 ・熱電対</td><td>定常・非定常</td><td>なし</td><td>あり</td><td>サプチャンネ ルコード 二流体コード</td><td>POST-BT 熱伝達 相関式の開発 に用いた文献、 データベース の紹介</td><td>D.C. Groeneveld, ,U. S. Atomic Energy Commission(1973)</td><td>日立二</td><td>西田浩</td></x<0.9<></x<0.9 		測定方法 ・熱電対	定常・非定常	なし	あり	サプチャンネ ルコード 二流体コード	POST-BT 熱伝達 相関式の開発 に用いた文献、 データベース の紹介	D.C. Groeneveld, ,U. S. Atomic Energy Commission(1973)	日立二	西田浩
基本的な物理量	熱伝達率	B T 以降	8X8 バンドル [PWR17X17 バンドル模擬]	1)定常 P=4-13MPa W= 40-800kg/m ² s 0.15<出口 X e q<1.40 2)非定常(配管破断模擬) P=5-12MPa W= 145-1100kg/m ² s(内径 10.4mm) 0.15<出口 X e q<1.50		測定方法・熱電対	定常・非定常	なし	あり	サブチャンネ ルコード 二流体コード	熱的非平衡が 大きな領域で の熱伝達率デ ータ	D. G. Morris, et al., Nuclear Technology, 69(1985)	日立二	西田浩
			1)単管 2)5X5 バンドル	相関式開発に用いたデータベース記載 1)単管 P=3.0MPa W= 100-310kg/m ² s,0.4 <x<1.0 Tw-Tsat=25-420 2)5X5 バンドル P=3.0-12.0MPa W= 115-600kg/m²s,0.75<x<1.0 Tw-Tsat=25-325</x<1.0 </x<1.0 		測定方法 ・熱電対	定常・非定常	なし	あり	サブチャンネ ルコード 二流体コード	POST-BT 熱伝 達相関式の提 案	Y. Koizumi, et al., J. Nuclear Science and Technology, vol.25, NO.1(1988)		西田浩
			3X3 バンドル体系	P=105-120kPa W= 0.1-26kg/m ² s,0.75 <x<1.0 Tsub=40-0.4 q=5-43kW/m²</x<1.0 		測定方法 ・熱電対	定常・非定常	なし	あり	二流体コード		T. Kuzla, te al, NUREG/CR-5095(日立二	西田浩
			垂直2重管 内管[外径15.9mm,肉厚2.9mm] 外管[内径31.5mm] 内管:水,環状流路:加熱用Na	P=7, 10, 12, 15MPa W= 720, 1400, 2400, 3200kg/m ² s		測定法 ・熱電対	定常	なし	あり	二流体コード 	液体金属の蒸 気発生器模擬	C. M. Gerge & D. M. France, Nuclear Engineering and Design (1991)	日立	西田浩

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			1)単ロッド ロッド外径 12.3mm 長さ 2m 管内径 22mm 格子型スペーサ 2) 5 X5 バンドル ロッド外径 12.3mm 長さ 3.7m 格子型スペーサ	1)単ロッド P=3MPa W= 110-310kg/m ² s,0 <x<0.9 2) 5 X5 バンドル P=3-12MPa W= 21-780kg/m²s,0<x<0.9< td=""><td></td><td>測定法 ・熱電対</td><td>定常</td><td>なし</td><td>あり</td><td>二流体コード</td><td>低過熱度まで 適用できる熱 伝達相関式の 提案</td><td>Y. Koizumi, et al., 3rd Int. Topl. Mtg. on nuclear Reactor Thermal- Hydraulics (1985)</td><td>日立 西田浩 二</td></x<0.9<></x<0.9 		測定法 ・熱電対	定常	なし	あり	二流体コード	低過熱度まで 適用できる熱 伝達相関式の 提案	Y. Koizumi, et al., 3rd Int. Topl. Mtg. on nuclear Reactor Thermal- Hydraulics (1985)	日立 西田浩 二
			BWR9x9 バンドル	実機定格運転状態 圧力:5.5~8.6Mpa 流量:300~1650kg/m2s 入口サブクール:50kJ/kg 水	断面平均	熱電対 精度の記載無し	定常	なし	あり	サブチャンネ ルコード 二流体コード	数値データ N U P E C が 保持	佃、日本原子力学会誌、 Vol.1,No.4,P384(2002)	東芝秋葉
其			垂直環状流路、Outer pipe (heated test section): copper pipes, I.D. 40 or 41 mm, Heating length 204 mm、Inner pipe: glass pipes (non-heated) or copper pipes (heated), O.D. 30, 36, 38 or 40 mm、 Clearance : 0.5, 1.0, 2.0 and 5.0 mm	流体 R-113、対向流条件、 圧力 0.1MPa、		熱電対、ビデオ画	定常	なし	あり		リウエッティ ング速度	小泉ほか、11th International Conference on Nuclear Engineering, CD-ROM, ICONE11-36226, April, 2003	小泉
全本的な物理員	熱伝達率	B T 以降	垂直環状流路、Outer pipe (heated test section): copper pipes, I.D. 40 or 41 mm, Heating length 204 mm、Inner pipe: glass pipes (non-heated) or copper pipes (heated), O.D. 30, 36, 38 or 40 mm、 Clearance : 0.5, 1.0, 2.0, 5.0, 10 mm and no inner pipe.	水、対向流条件、圧力 0.1MPa、			定常	なし	あり		リウエッティ ング速度	小泉ほか、 日本原子力学 会 2002 年秋の大会予稿集、 Vol. 、P362、平成 14 年 9 月	小泉
里			BWR9x9 バンドル	実機定格運転状態 圧力:5.5~8.6Mpa 流量:300~1650kg/m2s 入口サブクール:50kJ/kg	断面平均	熱電対 精度の記載無し	 定常	なし	あり	サブチャンネ ルコード 二流体コード	数値データ N U P E C が 保持	佃、日本原子力学会誌、 Vol.1,No.4,P384(2002)	東芝秋葉
			円管、内径 10mm、 流体 R-113 蒸気&液	流量 65~165kg/h、乾き度 0.7~0.95、 圧力 0.3 MPa、熱流束~8×10 ⁴ kcal/h		熱電対 加熱電力 測定	定常	なし	あり			小泉、機論 45 巻、395 号、 395 号、P1021~1028、昭 和 54 年 7 月	小泉
			12.7mm×2m シングルロッド、5×5 ×3.7mBWR 模擬燃料集合体	G = 21 ~ 780 kg/m²s、3 ~ 12MPa、乾き 度 0 ~ 0.9		熱電対 加熱電力 測定	定常	なし	あり			Koizumi, Nuclear Engineering and Design Vol. 99, P157 ~ 165, Feb., 1987	小泉
			垂直流下液膜、幅 50mm、高さ 230mm、厚さ25mm	大気圧、水、Cu、Brass、面平滑度、酸 化、流下液量 0.096 ~ 0.638kg/ms		熱電対	定常	なし	あり			大竹ら、機論 B 編、64 巻、 624 号、p457~2555、平成 10 年 8 月	工学院 小泉
			垂直流下液膜、幅 50mm、高さ 230mm、厚さ25mm	気圧、水、Cu、Brass、面平滑度、酸化、 流下液量 0.096 ~ 0.638kg/ms		熱電対	定常	なし	あり		(リウエッテ ィング速度)	大竹ら、 機論 B 編、64 巻、 624 号、p457~2555、平成 10 年 8 月	工学院 小泉

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			蒸気冷却されるガスタービン翼の蒸 気 / ミストによる衝突噴流冷却 ノズル直径:8.1mm ノズル間隔:25mm ノズル - 伝熱面間距離:22.5mm	蒸気 / ミスト条件:1.3 気圧,103 −104℃ ミスト径:2~9µm レイノルズ数:7,500~22,500	-	壁温測定精度: ±0.5℃ 熱伝達率測定精 度:±6.3~12.6% ミスト質量分率 測定精度:±20%	-	無し	有り	ミスト冷却の 取り扱いが可 能な市販 CFD コード ?	-	Li, X., International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 2279–2290.	西野
基本的な物理量	熱伝達率	B T 以降											

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			円管、内径 10mm、流体 R-113 蒸気 &液	流量 65~165kg/h、乾き度 0.7~0.95、 圧力 0.3 MPa、熱流束~8×10 ⁴ kcal/h		熱電対 加熱電力 測定	定常	なし	あり			小泉、機論 45 巻、395 号、395 号、P1021~1028、昭和 54 年 7月	小泉
			垂直環状流路、外管内径 D = 34, 36, and 46 mm、間隙 0.5, 1.0, 2.0, 5.0 and 10.0 mm	流体 R-113、 圧力 0.1 ~ 0.2MPa、 流量 G = 102 ~ 103 kg/m2s.		熱電対	定常	なし	あり			小泉ほか、2001 ASME International Mechanical Engineering Congress, and Exposition, Heat Transfer Div., CD-ROM, IMECE2001/HTD-24219, Nov., 2001	工学院 小泉
		В	垂直流下液膜、幅 50mm、高さ 230mm、厚さ 25mm	大気圧、水、Cu、Brass、面平滑度、酸 化、流下液量 0.096 ~ 0.638kg/ms		熱電対	定常	なし	あり			大竹ら、機論 B 編、64 巻、624 号、p457~2555、平成 10 年 8 月	工学院 小泉
		」 T 以	水平矩形、20 mm wide × 10 mm high × 830 mm long.伝熱面 SUS0.2 thick × 5 wide × 40 mm long 底面壁	水 - 空気、出口大気圧、入り口 50 °C、 G = 169 ~ 4220 kg/m ² s、Ug = 0 ~ 19 m/s、 qw = ~ 7.0×10 ³ kW/m ² 、flow state: dispersed-annular flow ~ a slug flow.		熱電対、ビデオ画 像	定常	なし	あり			小泉ほか、 Proc. of 4th JSME-KSME Thermal Engineering Conference, Vol. 1, P1-445 ~ 229, Oct., 2000	工学院 小泉
基		月リ	水平矩形 20W 10H mm, 660 mm long、SUS 伝熱面流路底辺 0.2t 5W 40L mm	出口大気圧、水、Glass beads of 0.6 mm diameter、2,700 kg/m3、入り口 Subcooling: 40 C、Water mass flux: 170 6,700 kg/m2s, Heat flux: 0 8.0 103 kW/m2 、 Volumetric introduction ratio of the particles: up to 28%.		熱電対、ビデオ画 像	定常	なし	あり			小泉ほか、10th International Conference on Nuclear Engineering CD-ROM, ICONE10-22470, Aprilo, 2002	工学院 小泉
本的な物理量	熱伝達		241 本 kettle reboiler inline 配列 d=19.05mm, p=25.4mm	R113 大気圧 プール沸騰 q":50kw/m²				無	有	二流体コード		Cornwell ASME Paper(1980) No.80-HT-45	東芝岩城
	率		マルチ小型スワールノズルによる伝 熱面(1×2cm2)のミスト冷却 ノズル - 伝熱面間距離:8.8mm	作動流体:FC-72,FC-87,水 代表噴射圧:1.72 気圧 雰囲気圧力:大気圧 フルコーンノズル	-	T 型熱電対によ る壁温測定 温度測定精度: ±0.2℃	-	無し	 有り 	ミスト冷却の 取り扱いが可 能な市販 CFD コード?	-	Lin, L, International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 3737 –3746.	西野
			水平円板	大気圧、常温空気・水、 Q ₁ =0.3-8l/h, Q _a =(0,)40-120 l _N /min φ15(Cu)	平均	熱電対・フーリエ 法則 8%	定常	なし	あり			Ohtake et al., Proc. IMECE'03, IMECE2003-41604(2003).	大竹浩靖(デー 夕所有)
		ミスト冷却	空気 - 液体窒素ミストによる伝熱面 ミスト噴流冷却	ノズル - 伝熱面間距離:4,6,8,10D (D はノズル内径) ジェットレイノルズ数:5000,10,000, 15,000,20,000	-	壁温測定は赤外 線放射温度計 壁温測定精度: ±0.7℃ 局所熱伝達率測 定精度:±7.9% レイノルズ数: ±5.8% 液体窒素湿り 度:±3.6%	-	無し	有り	ミスト冷却の 取り扱いが可 能な市販 CFD コード ?	-	Su, L. M., International Journal of Heat and Mass Transfer, 2003, to appear	西野
			蒸気冷却されるガスタービン翼の蒸 気 / ミストによる衝突噴流冷却 ノズル直径:8.1mm ノズル間隔:25mm ノズル - 伝熱面間距離:22.5mm	蒸気 / ミスト条件:1.3 気圧,103 -104℃ ミスト径:2~9μm レイノルズ数:7,500~22,500	-	壁温測定精度: ±0.5℃ 熱伝達率測定精 度:±6.3~12.6% ミスト質量分率 測定精度:±20%	-	無し 	有り 	ミスト冷却の 取り扱いが可 能な市販 CFD コード ?	-	Li, X., International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 2279 –2290.	西野

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 デ ー タ	グラフ	検証に使える 解析コード	<mark>コメント</mark> (使用上の注意)	文献	国内データ ベース提供者
		B T 後 のロッ ド温度	これは B T 以降の熱伝達率の項										
			垂直平板	大気圧、水 流下液膜、Γ=0.1~0.6kg/ms、平滑面、 酸化面、#320 面、銅・黄銅、50×230 mm	局所	熱電対・逆熱伝導 問題 10%	非定常	なし	あり			大竹・小泉・高橋、日本機 械 学 会 論 文 集 B 編、 Vol.64,No.624,P2547(1998)	大竹浩靖(デー 夕所有)
			水平円柱	大気圧、水 プール沸騰、∆T _{sub} =0,10,20K D=1mm(Pt)、局所低温度部 250~450	20mm 区 間平均値	白金電気抵抗の 温度依存性 5%	定常	なし	あり			大竹・長谷川・小泉、日本 機械学会論文集 B 編、 Vol.66,No.652,P3143(2000)	大竹浩靖(デー 夕所有)
			垂直平板	大気圧、水 プール沸騰、飽和 H=103.4mm(Cu)、平滑面、酸化面、#600 面	局所	熱電対・逆熱伝導 問題	定常	なし	あり			Bui and Dhir, Trans. ASME, J. Heat Transf., Vol. 107, No.4, P756(1985)	大竹浩靖(デー 夕読み取り済 み)
			水平円柱	大気圧、水 プール沸騰、ΔT _{sub} =0,10,20, 30K D=2mm(Pt)	平均	白金電気抵抗の 温度依存性	定常	なし	あり			西尾・坂口、日本機械学会 論 文 集 B 編 、 Vol.53,No.490,P1781(1987)	大竹浩靖(デー 夕読み取り済 み)
			球	大気圧、水 u=0-0.45m/s、ΔT _{sub} =0-50K D=19mm(SUS,Ag,Cu), 25.4mm(SUS)	平均	熱電対·集中熱定 数系近似	非定常	あり	あり		相関式有り	Dhir-Purohit, Nucl. Eng. Des., Vol.47, P49(1978).	大竹浩靖
基本	ഺ		水平円柱 (R 付)・球	大気圧、水 プール沸騰、ΔT _{sub} =0-80K	平均	熱電対	非定常	なし	あり			奈良崎・ほか2名,鉄と鋼, Vol. 75, No. 4, P634(1989).	大竹浩靖
本的な	熱面	最 小 膜	垂直円管	0.26-0.30MPa、R-113 G=412,629,1037,1466 kg/m ² s(クオリティ -0.29(ムT _{sub} =39.1K)~0.60) 内径 10mm(Cu)	局所	熱電対・逆熱伝導 問題	非定常	なし	あり			井上・植田、日本機械学会 論 文 集 B 編 、 Vol.53,No.496,P3748(1987)	大竹浩靖(井上 先生(東大)デ ータ所有)
初理量	一度	/ / 騰 温 度	垂直上昇伝熱管 内径:8.9mm、長さ1.5m 伝熱管:インコネル600 DC 加熱	P=2-9MPa W=115-2772 kg/m ² s -0.125 <xeq<0.116< td=""><td></td><td>測定方法 ・熱電対</td><td>定常</td><td>なし</td><td>あり</td><td>二流体コード</td><td>逆環状流下流 の壁面温度分 布、最小膜沸騰 温度データ</td><td>D.C. Groeneveld & J. C. Stewart, 2nd Int. Topical. Meeting on Nuclear Reactor Thermodynamics(1983)</td><td>日立西田浩二</td></xeq<0.116<>		測定方法 ・熱電対	定常	なし	あり	二流体コード	逆環状流下流 の壁面温度分 布、最小膜沸騰 温度データ	D.C. Groeneveld & J. C. Stewart, 2nd Int. Topical. Meeting on Nuclear Reactor Thermodynamics(1983)	日立西田浩二
			垂直上昇伝熱管 内径 12.5mm、外径 25.4mm (伝熱管の熱容量大) 長さ 102mm 伝熱管:インコネル X-750 輻射加熱	P=0.3-1.0MPa W=67-339kg/m ² s 0.3 <xeq<01.0< td=""><td></td><td>測定方法 ・熱電対</td><td>非定常</td><td>なし</td><td>あり</td><td>二流体コード</td><td>非定常時の沸 騰曲線より最 小膜沸騰温度 を定式化</td><td>O. C. Iloeje, et al, Tran. ASME, J. Heat Transfer(1975)</td><td>日立西田浩二</td></xeq<01.0<>		測定方法 ・熱電対	非定常	なし	あり	二流体コード	非定常時の沸 騰曲線より最 小膜沸騰温度 を定式化	O. C. Iloeje, et al, Tran. ASME, J. Heat Transfer(1975)	日立西田浩二
			BWR4X4,8X8	P=6-7Pa W=110-1485kg/m²s Tw-Tsat=60 - 390		測定法 ・熱電対	定常	なし	あり	二流体コード	定常 リウェッ ト 温度 データ を提示	K C. Chen, et al., 7th Int. Heat Transfer Conference(1982)	日立西田浩二

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
中計		沸	5×5× 3.7mBWR 模擬燃料集合体	0.5~12MPa、 Ul 0.3 & 1.2m/s、 入り口飽和、初期壁温~920K		熱電対		なし	あり			koizumi,Nuclear Engineering and Design, Vol.120, No.2&3, P301 ~ 310, June, 1990	小泉
本 的 な	伝 熱 面	騰 開 始	水平平板	P=0.1MPa、R113、飽和 プール沸騰 10×40mm (銅薄膜)	平均値	沸騰曲線(銅電気 抵抗の温度依存 性)	定常	なし	あり			大竹・井上・小泉、日本機 械学会論文集 B 編、 Vol.63,No.614,P3353(1997)	大竹浩靖(デー 夕所有)
物 理 量	温度	点温度	水平平板	P=0.1MPa、水 u=0.27~4.6m/s、ΔT _{sub} =20,30,40K 平滑面・#1000・#600・#320 3×26mm (銅薄膜)	平均値	コンダクタンス プローブ型ボイ ド計	定常	なし	あり			Ohtake et al., 10th Int. TopicalMeetingNucl.ReactorThermalHydraulics(NURETH-10),C00106,(2003)	大竹浩靖(デー 夕所有)

中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
		炉外単チャンネル(単一ロッドアニ ュラー流路)	熱流速:4-250kW/m ² 入口温度:10-70 圧力:大気圧 流量:0-30g/sec 流路面積:0.6-1.0x10 ⁻³ m ²	サブチャ ンネル	不安定発生の有 無: 不安定発生時の 流量時刻暦: 精度は不明		なし	あり	周波数領域安 定性コード 時間領域安定 性コード (共に核動特 性不要)	自然循環条件 につき、密度波 振動以外の可 能性にも言及 している	九州大学工学週報 第 73 巻、第 4 号 赤坂	堀田
		9×9燃料集合体体系 正方格子9×9(部分長ロッドあり を含む)ロッド径: 11.2 mm	圧力:7MPa、入口サブ クール:28-115kJ/kg、質 量速度:1-2×10 ⁶ kg/m2h、軸方向出力分 布:入口ピーク、中央ピーク	断面平均	入口流量の変動 と出力のグラフ より、安定性限界 出力を測定して いる。	時間平均	なし	あり	周波数領域安 定性コード 時間領域安定 性コード	B W R 設計安 定コード検証 に利用	Proc.4 th Int. Top. Mtg. on Nuc. Therm. Hydr., Opera-tions and safety (1994)	師岡
		電中研 SIRIUS 調査未了		サブチャ ンネル				あり	周波数領域安 定性コード 時間領域安定 性コード (共に核動特 性不要)	自然循環条件 につき、密度波 振動以外の可 能性にも言及 している	古谷	堀田
不	·段	炉外並行チャンネル(計算機による 核フィードバック模擬装置)	出力:100kW/rod 流量:380kg/m²-s 圧力:7 MPa	サブチャ ンネル	インピーダンス 型ボイド計 不安定振動有無 に基づき安定限 界出力判断 チャートに基づ く流量振幅		なし	あり	周波数領域安 定性コード 時間領域安定 性コード (共に核動特 性必要)	核的フィート バック が存在するた め、純然たる密 度波振動とい えないケース も含まれる	原子力学会、2000 春、炉物理、熱流動合同(6) 安濃田	堀田
个安定性	度波振動	同上(核フィードバックを含まない場合)	同上	同上	安定限界出力		なし	あり	周波数領域安 定性コード 時間領域安定 性コード (共に核動特 性不要)		原子力学会、2000 春、E28 井口	堀田
		炉外並行チャンネル	出力:0-3KW 圧力:1-5bar 入口温度:70-98 流量:0.1-0.3L/sec 流路形状: チャンネル直径:20.4mm 発熱棒直径:12.5mm バイパス直径:10mm	サブチャンネル	ワイアメッシュ による断面ボイド 分布 線ボイド率計 レーザードップラー 流速計 熱伝対によるライ ザー温度分布		なし	あり	周波数領域安 定性コード 時間領域安定 性コード (共に核動特 性不要)	自然循環条件 につき、密度波 振動以外の可 能性にも言及 している	NT、Vol.143,P77 MANERA	·堀田
	中項目不安定性	中項目 小項目 不安定性 密度波振動	中項目 小項目 試験体形状 ゲ外単チャンネル(単ーロッドアニ ュラー流路) タ×9 燃料集合体体系 正方格子9×9(部分長ロッドあり を含む)ロッド径:11.2 mm 電中研 SIRIUS 調査末了 一 「中外並行チャンネル(計算機による 核フィードバック模擬装置) 「 「日上(核フィードバックを含まない場合) 「 「中外並行チャンネル(計算機による 核フィードバック検護装置) 「 「日上(核フィードバックを含まない場合) 「	中項目 小項目 試験休形状 試験パラ メータ範囲 グ外単チャンネル(単ーロッドアニ ュラー流路) 熱洗道:4.250kW/m² ハロ選定:10.70 圧力:大気圧 流量:0.30g/sec 二次間子9×9(部分長ロッドあり を含む)ロッド径:11.2 mm 熱ス9 燃料集合体体系 正方格子9×9(部分長ロッドあり を含む)ロッド径:11.2 mm 圧力:7/MPa,入ロザクル:28-115kJ/kg,質 量速度:1-2×10 ^k g/m2h, 軸方向出力分 布:入ロビーク、中央ビーク 電中研 SIRIUS 調査未了 レカ:100kW/rod 洗量:380kg/m².s 圧力:7 MPa ア外並行チャンネル(計算機による 核7/-ドパック使賞装置) 出力:100kW/rod 洗量:380kg/m².s 圧力:7 MPa 「同上(核7/-ドパックを含まない場合)] 同上 が外並行チャンネル 出力:0.3KW ビ力:1-5bar 八口温度:70-98 洗量:0.1-0.31.Sec 温용形: チャンネル道径:20.4mm 発気棒道径:12.5mm パイパス重径:10mm	中項目 小項目 試験体形状 試験パラ × - 2 範囲 パースの 空間 メーク範囲 パースの 空間 メーク範囲 パースの 空間 メーク範囲 パースの 空間 メーク範囲 パースの 空間 メーク範囲 パースの 空間 メーク範囲 パースの ジブチャ パース回しての オード ジール協力 ジール協力 ボスローク ビフ・大気圧 活気面積: 0.61.0x10 ³ m ² ジブチャ ンネル タック解剖集合体体系 正方格子9×9(部分長ロッドあの) を含む)ロッド径: 11.2 mm 圧力: 170km、ハロジーク、中央ビーク 断回甲均 電速度: 1-2×10 ⁴ kg/n2h, 軸方向出力分 市、入ロビーク、中央ビーク サブチャ ンネル マ外並行チャンネル(計算機による kg/ikm 出力: 100kW/rod 活量: 380kg/m ² ·s サブチャ ンネル アクト並行チャンネル(計算機による kg/ikm 出力: 100kW/rod 活量: 300kg/m ² ·s サブチャ ンネル 「日上(核ワイトドパックを含まない場合) 同上 同上 「小10.31 Arec 法庭務形派: 法をご知道: 70-98 六量種(注: 10.01mm) ジブチャ ンネル 「ロー 「二 「二	中田目 小田目 試験体形状 注場(5) × - 夕昭囲 空間 分解電 測定方法 測定面積 別定方法 メータ四囲 グ勝単キシネル(単ーロッドアニ ユラー流路) 防洗道・4 250KWm² ユラー流路) サブチャ ンネル サブチャ 次定発生ゆの 洗量時刻層: 流路留前:0.61.0x10 ⁻³ m² サブチャ ンネル ンネル 数 9 × 9 部村集合体検系 工方格子 9 × 9 (部分長口ッドカ) 査 (-1.0x10 ⁻³ m² サブチャ 法認留前:0.61.0x10 ⁻³ m² サブチャ ンネル 入口違便の変引 法面かのグラフ より、変定性ゆの 洗量見して、 1日:77/Pa, 入口ジ 7-1:28-115KJ/kg, 質 ホスロビーク、中央ビーク 計画単均 より、変定性助う より、変定性助う エリ、変定性助う エリ、変定性助う エリ、変定性助う エリ、変にした。 9 × 9 部村集合体検系 工方格子 9 × 9 (部分長日で) 臣力:77/Pa, 入口ジ 7-1:28-115KJ/kg, 質 ホスロビーク、中央ビーク 計画単う たいないのクラフ より、変定性販売 加入 力に読の変引 エリ、マンスル マサ研 SIRUS 調査未了 レンビーダンネル (計算機にて) ロンビーク、中央ビーク サブチャ ンネル ノンビーダンス エリ、 マネル (素) P/P+転行デャンネル(計算機による 板ワ・ドド、ック検察通) 出力:100kW/rod 流量:380kg/m*s 圧力:7.5bar サブチャ ンネル プンビーダンス エリ、 マネル (国 L (物パ・ドパックを含まない場合) 同上 同上 同上 フイアメッシュ とる新師館 4 ⁺ の 近 道計 が がボデチャンネル 近力:0.3KW 圧力:15bar フイアメッシュ レーダード・ アリアメル レーダード・ アリアメル レーダード・ アリアメル レーダード・ アリア スル フイアメーシュ レーダード・ アリア スル フイアメーシュ スル レーダード・ アリア スル が 10.01/000000000000000000000000000000000	中国目 小球目 試験体形状 試験(5) メーク報告 空間 分解散 測定方点 別定方点 時電分解応 アクトローコッドアニ コラー派名) 法法道:4-2014/W ^{inf} 人口温度:10.70 店式:5,54E 流量:0.30g/sec が水 アクテャ ンネル 不安正発生めの 法量が利用 9 × 9 燃料集合体体系 正方格子 9 × 9 燃料集合体体系 正方格子 9 × 9 (部分長ロットあり を含む)ロッド径:11.2 mm 度式:0.2x (10 kg/c2x, 10 kg/c2x	中選目 小選目 試験特形状 ブメータ毎回 メータ毎回 空間 分類型 逆見方法 別定定点 別定定点 時間分解 数巻 データ 水の第日 が外増チャンネル(単一ロッドアニ コラー次路) 約洗達:4200KWm ² 人口温度:10-70 次型:2,545 元21:2,545 元温度:0.90g/set 2,546.70×3.9(部分長日ッドわり) 約二次日本 大工工業(10,70 元日にマーク) サブチャ マルル 大正濃高明的: 電目日の中 なし 3×3.9 燃料集合体体系 正方格用フッド(1:12 mm) た1.70% 元日につり,中央につり 前回中均 た.101×0.00% か.201×2.400 kgr/sh, 角方向出力力 か.201×2.400 kgr/sh, 角方向出力力 か.201×2.400 kgr/sh, 角方向出力力 いう。 前回中均 た1.030/270 c1.030/270	中国目 小田 武敏休形状 送知(つ) (2000) 空間 (2000) 空間 (2000) 空間 (2000) 2000 (2000) 2000 (2000)	대표 ····································	IDEN (1)日 <	・中国 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コン (使用.
			 ・2ch-上部にチム二部設置 ・環状流路 ・外管内径 約 22mm ・加熱部長さ 1.7m 	圧力 大気圧~7Mpa サプクール度 10 ~60 熱出力 1kW~64kW/ch	•	ボイド率 差圧測定によ り加熱部平均を 求める ・チャンネル入口 流速 入口圧力損失 より算出	非 定 常 0.1sec 有り	有り 1	・有り 	TRAC , RELAP などの 二相流解析コ ード ・BWR 許認可 用線形安定性 解析コード	
基本的な	不安	密度油	円管 内径 6.98mm 外径 10.0mm 垂直配置 加熱長 2.68m R-113	圧力 0.21-0.41MPa 質量流量 50-90kg/h 加熱量 400-2500W 入口サブクーリング 10-60K 強制循環モード 自然循環モード		流量:オリフィス 脈 動 の モ ニ タ ー : ベンチュリ 差圧:差圧トラン スデューサ		なし	記録波形 の コ ピ ー , 安定 限界	通常の不安定 流動解析コー ド	
い 物 理 量	定性	版動	円管 内径 5.0mm 外径 6.0mm 垂直配置 加熱長 0.9m 液体窒素	圧力 0.3-0.42MPa 質量流束 60-300kg/m2s 熱流束 4.2-76.2kW/m2 入口サプクーリング 7.0-12.0K 自然循環モード		流量:タービンフ ローメータ 差圧:差圧トラン スデューサ		なし	記録波形 の コ ピ ー , 安定 限界	通常の不安定 流動解析コー ド	
			炉外並行チャンネル(計算機による 核フィードバック模擬装置)	出力:100kW/rod 流量:400-667kg/m ² -s 圧力:2-7 MPa	サブチャ ンネル	インピーダンス 型ボイド計 外乱に応答する 流量振幅で安定 限界出力判断	非定常 0.1sec	なし	時系列流 量 減幅比 安定限界	周波数領域安 定性コード 時間領域安定 性コード (共応動特 性必要)	核的存、波な含素を

メント 上の注意)	文献	国内データ ベース提供者
	1. M.Furuya, et al. NURETH7 Vol.2, pp.923-932, 1995-9. 2. M. Furuya, et al. NURETH8 Vol.3, pp.1778-1784, 1997-10. 3. M. Furuya, et al. Proc. Single and Two-Phase Natural Circulation Conference, EUROTHERM Seminar 63, B6, Genoa, Italy, 1999. 4.古谷 他,機論, B61, 591, pp.4074-4080, 1995. 5.古谷 他, 機論 B63-612, pp.163-169, 1997. 6. M. Furuya, et al. Heat and Mass Transfer, Vol.37, pp.111-115, 2001.	稲田、古谷
	S.Nakanishi, S. Ishigai, M. Ozawa et al., Flow Instibilities in Boiling Channels: Density Wave Oscillation in a Single Channel Boiling System, Theoretical and Applied mechanics, Vol.26, pp.421-430(1976).	小澤
	M.Ozawa et al., Density Wave Oscillation in a Natural Circulation Loop of Liquid Nitrogen, Instabilities in Multiphase Flows, Plenum Press, New York, pp.113-124 (1993).	小澤
ィード パック Eするた !然動とい いケース これる	T.Iguchi et al. NURETH-10 A00511, 2003-10.	井口

大項目	中項目	小項目	試験体形状	試験パラ メータ範囲	空間 分解能	測定方法 測定精度	時間分解能	数値 データ	グラフ	検証に使える 解析コード	コメント (使用上の注意)	文献	国内データ ベース提供者
			同上(核フィードバックを含まない場合)	同上	同上	インピーダンス 型ボ イド 計 外乱に応答する 流量振幅で安定 限界出力判断	非定常 0.1sec	なし	安定限界	周波数領域安 定性コード 時間領域安定 性コード (共に核動特 性不要)		 原子力学会、2003 春、J12,井口 Y.Shibamoto, et al. ICONE-36298, 2003-5 	井口
		密度波	同上(核フィードバックを含まない場合)	同上	同上	安定限界出力 不安定時冷却限 界		なし	時系列流 量 減幅比 安定限界 冷却限界			T.Iguchi, et al. ICONE-36452, 2003-5	井口
		振動	BWR9×9燃料模擬 3×3 バンドル (ロッド径 11.2mm.,ロッド間ピッチ 14.3mm,発熱長 3708mm) 部分長燃料棒の有、無	圧力:7 MPa、 入口サブクール:28-115 kJ/kg 質量速度:1-2×10 ⁶ kg/m2h 軸方向出力分布:入口ピーク、一様 入口抵抗係数:大、中	バンドル 全体	入口流量の変動 と出力のグラフ より、安定性限界 出力を測定して いる。	時間平均	なし	あり	二流体コード 安定性解析コ ード	BWR設計用 安定性コード 検証に利用	Mitsutake, Proc.4 th Int. Top. Mtg. on Nuc. Therm.Hydr., Opera-tions and safety (1994)	師岡慎一
			BWR 8 x 8 燃料模擬 2 x 2 バンドル (ロッド径 12.3mm.,ロッド間ピッチ 16.2mm,発熱長 3708mm)	圧力:7 MPa、 入口サプゥール:28-115 kJ/kg 質量速度:1-2×10 ⁶ kg/m2h 軸方向出力分布:入口ピーク、一様 入口抵抗係数:大、中	バンドル 全体	入口流量の変動 と出力のグラフ より、安定性限界 出力を測定して いる。	時間平均	なし	あり	二流体コード 安定性解析コ ード	BWR設計用 安定性コード 検証に利用	Enomoto, 3rd Int. Top MTG on Reactor Thermal-Hydraulics, 9-B,(1985)	師岡慎一
基本的な物理	不安定性	領域安	 ・2ch-上部にチムニ部設置(チムニも2ch) ・環状流路 ・外管内径 約 22mm ・加熱部長さ 1.7m 	圧力 7MPa サブクール度 10 ~ 60 熱出力 1kW ~ 64kW/ch		 ボイド率 差圧測定により加熱部平均を 求める チャンネル 入口流速 入口圧力損失 より算出 	非 定 常 0.1sec 有り	有り	有り	・ TRAC , RELAP などの 二相流解析コ ード ・BWR 許認可 用線形安定性 解析コード		1.M.Furuya, et al. ICONE-9593, 2001 2.古谷他,日本原子力学会 誌, Vol.43, No.10, pp.1027- 1038, 2001-10. 3.M.Furuya et al. NURETH-10 A00503, 2003-10.	古谷正裕 稲田文夫
物 理 量	Ĭ	定性	リングハルズ 1 号機	出力:64%-77% 流量:3600-4200Kg/sec 圧力:7 MPa	LPRM(バ ンドル 4 体分の平 均)	LPRM		あり	安定限界 出力、減 幅比、 LPRM 応 答 周波数	周波数領域安 定性コード 時間領域安定 性コード (共に核動特 性必要)	OECD/NEA よ リデジタルデ ータ入手可能 領域不安定発 振点は1点の み	NEA/NSC/DOC(94)15 Lefvert	堀田
		炉	リングハルズ 1 号機	出力:64%-77% 流量:3600-4200Kg/sec 圧力: 7 MPa 同上	同上 LPRM(バ ンドル4 体分の平 均)	LPRM		同上	同上安定 限界出 力、減幅 比、 LPRM 応 答 周波数	同上周波数領 域安定性コー ド 時間領域安定 性コード (共に核動特 性必要)	同上 OECD/NEA よ リデジタルデ ータ入手可能 領域不安定発 振点は1点の み	同上 NEA/NSC/DOC(94)15 Lefvert	堀田
		心	ピーチボトム 2 号機					なし	減幅比 周波数	同上		EPRI-NP-564 Carmichael	堀田
		女定性	Dedewaard	出力:0-180MWth 流量:0-1300Kg/sec 入口サプクール:0-8 圧力:40-70bar	炉心全体 安定度	炉内核計装		なし	減幅比周波数	同上			堀田
			国内 BWR4	出力:30-100% 流量:30-100% 圧力:7MPa	同上	LPRM		なし	減幅比	同上		SMORN-VII Anegawa	堀田